Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.594
Filtrar
1.
Mol Biol Rep ; 51(1): 487, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578532

RESUMO

The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.


Assuntos
Imunoterapia , Neoplasias , Nucleotidiltransferases , Humanos , Antivirais , DNA/genética , Imunidade Inata , Interferons , Neoplasias/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612916

RESUMO

Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.


Assuntos
Adenina , Proteínas de Saccharomyces cerevisiae , Humanos , Cisplatino , Dano ao DNA , Replicação do DNA , Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620034

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Suínos , Farnesiltranstransferase/metabolismo , Proteínas Virais/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Transdução de Sinais
4.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578074

RESUMO

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Assuntos
Eméticos , Microbiologia de Alimentos , Recombinases/genética , Bacillus cereus/genética , Sistemas CRISPR-Cas , Sensibilidade e Especificidade , Nucleotidiltransferases/genética
5.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
6.
Virus Res ; 343: 199344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431054

RESUMO

BACKGROUND: Human metapneumovirus(hMPV) is one of the most common viruses that cause acute lower respiratory tract infections. Interleukin-1ß (IL-1ß) has been reported to play an important role in multiple virus replication. Patients with hMPV infection have increased levels of IL-1ß which reminds IL-1ß is associated with hMPV infection. However, the mechanism by which IL-1ß affects hMPV replication remains unclear. In this study, we explore the effect of IL-1ß on hMPV replication and investigate its specific mechanism of action. METHODS: We established an hMPV infection model through Human bronchial epithelial cells (16HBE). qRT-PCR and Western Blot were used to detect the expression levels of IL-1ß, cyclic GMP-AMP synthase (cGAS), and interferon stimulating factor (STING). Regulating IL-1ß expression by small interfering RNA (siRNA) or exogenous supplementary to study the influence of hMPV replication. The selective cGAS inhibitor RU.521, G150, and STING inhibitor H-151 were utilized to detect hMPV replication in 16HBE cells. RESULTS: The level of IL-1ß protein increased in a time-dependent and dose-dependent manner after hMPV infection. The mRNA and protein levels of cGAS and STING were significantly up-regulated. Knockdown of IL-1ß could contribute to the decreased viral loads of hMPV. While the exogenous supplement of recombinant human IL-1ß in cells, replication of hMPV was significantly increased. Additionally, the level of cGAS-STING protein expression would be affected by regulating IL-1ß expression. Inhibitors of the cGAS-STING pathway led to a lower level of hMPV replication. CONCLUSION: This study found that IL-1ß could promote hMPV replication through the cGAS-STING pathway, which has the potential to serve as a candidate to fight against hMPV infection, targeting IL-1ß may be an effective new strategy to restrain virus replication.


Assuntos
Metapneumovirus , Humanos , Metapneumovirus/genética , Interleucina-1beta/genética , Transdução de Sinais/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferons
7.
Front Immunol ; 15: 1380517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515746

RESUMO

As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.


Assuntos
DNA , Nucleotidiltransferases , Nucleotidiltransferases/genética , Imunidade Inata , Citosol , Citoplasma
8.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38530250

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is activated by binding to DNA. Activated cGAS produces 2'3'-cGAMP, which subsequently binds to the adaptor protein STING (stimulator of interferon genes). This interaction triggers the cGAS/STING signaling pathway, leading to the production of type I interferons. Three types of DNA, namely double-stranded DNA longer than 40 base pairs, a 70-nucleotide single-stranded HIV-1 DNA known as SL2, and Y-form DNA with unpaired guanosine trimers (G3 Y-form DNA), induce interferon production by activating cGAS/STING signaling. However, the extent of cGAS activation by each specific DNA type remains unclear. The comparison of cGAS stimulation by various DNAs is crucial for understanding the mechanisms underlying cGAS-mediated type I interferon production in the innate immune response. Here, we revealed that cGAS produces 2'3'-cGAMP at a significantly lower rate in the presence of single-stranded SL2 DNA than in the presence of double-stranded DNA or G3 Y-form DNA. Furthermore, the guanine-to-cytosine mutations and the deletion of unpaired guanosine trimers significantly reduced the 2'3'-cGAMP production rate and the binding of cGAS to Y-form DNA. These studies will provide new insights into the cGAS-mediated DNA-sensing in immune response.


Assuntos
HIV-1 , Interferon Tipo I , HIV-1/genética , DNA de Cadeia Simples/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/genética , DNA/metabolismo , Imunidade Inata , Interferon Tipo I/genética , Guanosina
9.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488012

RESUMO

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envelhecimento , Senescência Celular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Disco Intervertebral/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
11.
Free Radic Biol Med ; 216: 80-88, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494142

RESUMO

In various hyperproliferative disorders, damaged mitochondria can release mitochondrial DNA (mtDNA) into the cytoplasm, activating the cGAS-STING signaling pathway and subsequent immune imbalances. Our previous research has demonstrated that hypoxia plays a role in the development of adenomyosis (AM) by inducing mitochondrial dysfunction. However, the precise involvement of the cGAS-STING signaling pathway and mtDNA in AM remains unclear. Therefore, this study aims to investigate the relationship between mtDNA secretion, changes in the cGAS-STING signaling pathway, and the abnormal cellular proliferation observed in AM. We found the cGAS, STING, TBK1, p-TBK1, IRF3, and p-IRF3 proteins levels were significantly elevated in the tissues of patients with AM compared to the control group. Additionally, there was an increase in the expression of the pro-inflammatory cytokines IL-6 and IFN-α in the AM tissues. Hypoxia-induced an increase in the proliferation and migration abilities of endometrial stromal cells (ESCs), accompanied by the activation of the cGAS-STING signaling pathway and elevated levels of IFN-α. Furthermore, hypoxia promoted the leakage of mtDNA into the cytoplasm in AM ESCs, and the deletion of mtDNA reduced the activation of the cGAS-STING pathway. Moreover, knockdown of the STING gene inhibited the expression of TBK1, p-TBK1, IRF3, and p-IRF3 and suppressed the secretion of the inflammatory cytokines IL-6 and IFN-α. Furthermore, the migration and invasion abilities of AM ESCs were significantly diminished after STING knockdown. These findings provide valuable insights into the role of mtDNA release and the cGAS-STING signaling pathway in the pathogenesis of AM.


Assuntos
Adenomiose , DNA Mitocondrial , Feminino , Humanos , Adenomiose/metabolismo , Adenomiose/patologia , Citocinas/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipóxia/metabolismo , Interleucina-6/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
12.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(3): 252-258, 2024 Mar 12.
Artigo em Chinês | MEDLINE | ID: mdl-38448178

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a DNA receptor that produces the second messenger cyclic GMP-AMP (cGAMP). cGAMP activates stimulator of interferon genes (STING), which initiates a signaling cascade leading to immune and inflammatory responses. This intricate molecular pathway plays a pivotal role in the pathogenesis and progression of diverse respiratory ailments, including respiratory infection, lung cancer, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, asthma, and acute lung injury. Consequently, the cGAS-STING signaling pathway has emerged as a promising novel therapeutic target, opening up new avenues for the diagnosis and treatment of respiratory disorders. This review focuses on recent advances in our understanding of the cGAS-STING signaling pathway and its intricate involvement in respiratory system diseases.


Assuntos
Nucleotídeos Cíclicos , Transtornos Respiratórios , Infecções Respiratórias , Humanos , Nucleotidiltransferases/genética , Interferons
13.
CNS Neurosci Ther ; 30(3): e14671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459658

RESUMO

BACKGROUND: With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS: In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION: The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.


Assuntos
Doenças Neurodegenerativas , Humanos , DNA/genética , DNA/metabolismo , Imunidade Inata , Doenças Neurodegenerativas/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia
14.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38299799

RESUMO

Zika virus (ZIKV) is a re-emerging RNA virus and causes major public health events due to its link to severe neurological complications in foetuses and neonates. The cGAS-STING signalling pathway regulates innate immunity and plays an important role in the invasion of DNA and RNA viruses. This study reveals a distinct mechanism by which ZIKV restricts the cGAS-STING signalling to repress IFN-ß expression. ZIKV attenuates IFN-ß expression induced by DNA viruses (herpes simplex virus type 1, HSV-1) or two double-stranded DNAs (dsDNA90 and HSV120) in mouse embryonic fibroblasts (MEFs). Notably, ZIKV NS5, the viral RNA-dependent RNA polymerase, was responsible for the repression of IFN-ß. NS5 interacts with STING in the cytoplasm, suppresses IRF3 phosphorylation and nucleus localization and promotes the cleavage of STING K48-linked polyubiquitination. Furthermore, the NS5 methyltransferase (MTase) domain interacts with STING to restrict STING-induced IFN-ß expression. Interestingly, point mutation analyses of conserved methyltransferase active site residue D146 indicate that it is critical for repressing IFN-ß expression induced by STING stimulation in cGAS-STING signalling.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Camundongos , Domínio Catalítico , DNA , Fibroblastos/metabolismo , Imunidade Inata , Interferons , Metiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Zika virus/fisiologia
15.
Int J Parasitol ; 54(5): 247-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311021

RESUMO

Improvements in diagnostics for schistosomiasis in both humans and snail hosts are priorities to be able to reach the World Health Organization (WHO) goal of eliminating the disease as a public health problem by 2030. In this context, molecular isothermal amplification tests, such as Recombinase Polymerase Amplification (RPA), are promising for use in endemic areas at the point-of-need for their accuracy, robustness, simplicity, and time-effectiveness. The developed recombinase polymerase amplification assay targeting the Schistosoma mansoni mitochondrial minisatellite region (SmMIT-RPA) was used to detect S. mansoni DNA from both laboratory and field Biomphalaria snails. Laboratory snails were experimentally infected and used at one, seven, and 28 days post-exposure (dpe) to 10 S. mansoni miracidia to provide samples in the early pre-patent infection stage. Field samples of Biomphalaria spp. were collected from the Mucuri Valley and Jequitinhonha Valley regions in the state of Minas Gerais, Brazil, which are endemic for S. mansoni. The sensitivity and specificity of the SmMIT-RPA assay were analysed and compared with existing loop-mediated isothermal amplification (LAMP), PCR-based methods, parasitological examination of the snails, and nucleotide sequencing. The SmMIT-RPA assay was able to detect S. mansoni DNA in the experimentally infected Biomphalaria glabrata as early as one dpe to 10 miracidia. It also detected S. mansoni infections (55.5% prevalence) in the field samples with the highest accuracy (100% sensitivity and specificity) compared with the other molecular tests used as the reference. Results from this study indicate that the SmMIT-RPA assay is a good alternative test to be used for snail xenomonitoring of S. mansoni due to its high sensitivity, accuracy, and the possibility of detecting early pre-patent infection. Its simplicity and portability also make it a suitable methodology in low-resource settings.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Schistosoma mansoni/genética , Recombinases/genética , Repetições Minissatélites , Biomphalaria/genética , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/epidemiologia , Nucleotidiltransferases/genética , DNA de Helmintos/genética
16.
Int J Cancer ; 154(12): 2106-2120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353495

RESUMO

Mutations in histone H3.3-encoding genes causing mutant histone tails are associated with specific cancers such as pediatric glioblastomas (H3.3-G34R/V) and giant cell tumor of the bone (H3.3-G34W). The mechanisms by which these mutations promote malignancy are not completely understood. Here we show that cells expressing H3.3-G34W exhibit DNA double-strand breaks (DSBs) repair defects and increased cellular sensitivity to ionizing radiation (IR). Mechanistically, H3.3-G34W can be deposited to damaged chromatin, but in contrast to wild-type H3.3, does not interact with non-homologous end-joining (NHEJ) key effectors KU70/80 and XRCC4 leading to NHEJ deficiency. Together with defective cell cycle checkpoints reported previously, this DNA repair deficiency in H3.3-G34W cells led to accumulation of micronuclei and cytosolic DNA following IR, which subsequently led to activation of the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, thereby inducing release of immune-stimulatory cytokines. These findings suggest a potential for radiotherapy for tumors expressing H3.3-G34W, which can be further improved by combination with STING agonists to induce immune-mediated therapeutic efficacy.


Assuntos
Distúrbios no Reparo do DNA , Histonas , Criança , Humanos , Histonas/genética , Nucleotidiltransferases/genética , Imunidade , DNA
17.
Virus Res ; 343: 199342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
18.
Esophagus ; 21(2): 165-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324215

RESUMO

BACKGROUND: Chemotherapy has the potential to induce CD8+ T-cell infiltration in the tumor microenvironment (TME) and activate the anti-tumor immune response in several cancers including esophageal squamous cell carcinoma (ESCC). The tumor cell-intrinsic cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has been known as a critical component for regulating immune cell activation in the TME. However, its effect on the infiltration of immune cells induced by chemotherapy in the ESCC TME has not been investigated. METHODS: We examined the effect of the tumor-cell intrinsic cGAS-STING pathway on the infiltration of CD8+ T cells induced by chemotherapy in ESCC using ESCC cell lines and surgically resected ESCC specimens from patients who received neoadjuvant chemotherapy (NAC). RESULTS: We found that chemotherapeutic agents, including 5-fluorouracil (5-FU) and cisplatin (CDDP), activated the cGAS-STING pathway, consequently inducing the expression of type I interferon and T-cell-attracting chemokines in ESCC cells. Moreover, the tumor cell-intrinsic expression of cGAS-STING was significantly and positively associated with the density of CD8+ T cells in ESCC after NAC. However, the tumor cell-intrinsic expression of cGAS-STING did not significantly impact clinical outcomes in patients with ESCC after NAC. CONCLUSION: Our findings suggest that the tumor cell-intrinsic cGAS-STING pathway might contribute to chemotherapy-induced immune cell activation in the ESCC TME.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Interferon Tipo I , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Linfócitos T CD8-Positivos , Neoplasias Esofágicas/tratamento farmacológico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/uso terapêutico , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Microambiente Tumoral
19.
Int J Biol Macromol ; 262(Pt 1): 130045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336317

RESUMO

The K239 type capsular polysaccharide (CPS) isolated from Acinetobacter baumannii isolate MAR19-4435 was studied by sugar analysis, one- and two-dimensional 1H and 13C NMR spectroscopy. K239 consists of branched heptasaccharide repeats (K-units) comprised of five residues of l-rhamnose (l-Rhap), and one residue each of d-glucuronic acid (d-GlcpA) and N-acetyl-d-glucosamine (d-GlcpNAc). The structure of K239 is closely related to that of the A. baumannii K86 CPS type, though the two differ in the 2,3-substitution patterns on the l-Rhap residue that is involved in the linkage between K-units in the CPS polymer. This structural difference was attributed to the presence of a gtr221 glycosyltransferase gene and a wzyKL239 polymerase gene in KL239 that replaces the gtr80 and wzyKL86 genes in the KL86 CPS biosynthesis gene cluster. Comparison of the two structures established the role of a novel WzyKL239 polymerase encoded by KL239 that forms the ß-d-GlcpNAc-(1→2)-l-Rhap linkage between K239 units. A. baumannii MAR19-4435 was found to be non-susceptible to infection by the APK86 bacteriophage, which encodes a depolymerase that specifically cleaves the linkage between K-units in the K86 CPS, indicating that the difference in 2,3-substitution of l-Rhap influences the susceptibility of this isolate to bacteriophage activity.


Assuntos
Acinetobacter baumannii , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Nucleotidiltransferases/genética , Família Multigênica
20.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321962

RESUMO

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Assuntos
Dano ao DNA , DNA Polimerase iota , Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Reparo do DNA , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , DNA Primase/metabolismo , DNA Primase/genética , 60555
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...